Cornell University Food Science Department
Position Statement on Raw Milk Sales and Consumption

We recommend pasteurization of milk intended for consumption by humans. Specifically, we strongly recommend that raw milk not be served to infants, toddlers, or pregnant women, or any person suffering from a chronic disease or a suppressed immune system. In addition, we strongly recommend that raw milk not be provided to the general public at farms or at retail; raw milk consumption could expose these people to unnecessary and/or extremely costly and painful risks for which a milk producer may be held legally responsible. Pasteurization offers protection – both for the consumer and for the producer - from the consequences of foodborne infection by pathogens that can be found in raw milk.

Health Hazards Associated with Raw Milk Consumption

Physicians linked consumption of raw milk with the spread of disease early in the 20th century. Raw milk consumption was associated with many serious human diseases, including diphtheria, typhoid, tuberculosis, and brucellosis (1). In fact, in 1938, 25% of all U.S. illnesses resulting from consumption of contaminated food and water were linked back to milk consumption (2). During this era, human illnesses typically resulted from consumption of milk that had been obtained from unhealthy cows under unsanitary conditions. Modern U.S. dairy products are associated with considerably less than 1% of foodborne illnesses that are traced back to food source each year (2). The reduction in numbers of foodborne illnesses associated with milk consumption over the years reflects implementation of: (i) on-farm programs to control animal diseases, including brucellosis, tuberculosis and mastitis; (ii) enhanced farm sanitation practices; (iii) temperature control of milk products from the farm to the consumer (milk must be kept at 45°F or below within 2 hours of milking); and (iv) pasteurization of the majority of commercial dairy products (2).

In addition to the reduction in the number of illnesses associated with dairy product consumption since 1938, the nature of dairy-borne human illnesses has changed, as well. In the past 20 years, illnesses from dairy product consumption have been predominantly associated with Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, and Escherichia coli O157:H7 (3), which can be present in milk obtained from healthy animals, typically as a consequence of contamination that occurs during or after milking (e.g., milk contamination from contact with fecal material or inadequately cleaned equipment) (4). In recent years, pathogenic microorganisms have been isolated from bulk tank samples at rates ranging from 0.87% to 10% of total samples collected (5, 6, 7, 8, 9), indicating a measurable probability of encountering pathogenic bacteria in raw milk.
Examples and prevalence of human foodborne pathogens isolated from raw bulk tank milk (adapted from Ruegg, P. [http://www.uwex.edu/milkquality/PDF/zoo.pdf])

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>State or Province</th>
<th># Tanks Sampled</th>
<th>% Positive Bulk Tanks</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella</td>
<td>WI, MI, IL</td>
<td>678 tanks</td>
<td>4.70%</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Ontario</td>
<td>1,721 tanks</td>
<td>0.17%</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SD, MN</td>
<td>131 tanks</td>
<td>6.10%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TN, VA</td>
<td>292 tanks</td>
<td>8.90%</td>
<td>9</td>
</tr>
<tr>
<td>Listeria</td>
<td>Ontario</td>
<td>1,721 tanks</td>
<td>2.73%</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>SD, MN</td>
<td>131 tanks</td>
<td>4.60%</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TN, VA</td>
<td>292 tanks</td>
<td>4.10%</td>
<td>9</td>
</tr>
<tr>
<td>E. coli O157:H7</td>
<td>Ontario</td>
<td>1,721</td>
<td>0.87%</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>WI</td>
<td>115 tanks</td>
<td>10.00%</td>
<td>7</td>
</tr>
</tbody>
</table>

Milk Pasteurization

The public health objective of milk pasteurization, as defined in the Grade “A” Pasteurized Milk Ordinance (2), is to eliminate all non-spore forming pathogens commonly associated with milk. Pasteurization processes are specifically implemented to reduce the potential risk to consumers of illness due to pathogens that may be present in raw milk. All milk intended for human consumption must be handled according to good agricultural and manufacturing process procedures. As pasteurization is not designed to sterilize milk, it may not eliminate all harmful bacteria if raw milk is heavily contaminated. Therefore, milk intended for human consumption must be obtained from healthy cows and protected from contamination. The temperature and time regime for pasteurization is currently designed to kill *Coxiella burnetii*, an animal pathogen that is the causative agent of Q-fever in humans. *C. burnetti* is currently accepted as the most heat-resistant human pathogen found in milk. Good hygiene practices during milking and subsequent handling of milk are essential to reduce the risk of contamination on the farm and in the milk processing plant. Careful packaging of pasteurized milk in clean, sanitized containers also helps retard spoilage of milk so it lasts longer after it is purchased. Milk that is not properly handled can become re-contaminated after the heat treatment. Rapid cooling after pasteurization, sanitary handling, and storage in a clean, closed container at 40°F or below are also important aspects of ensuring safe milk.

Many Types of Raw Foods Can be Hazardous for Human Consumption

Many raw foods may be contaminated with harmful bacteria. Certain raw foods should always be treated as if they are contaminated. For example, ground beef may be contaminated with a number of organisms associated with a cow’s gastrointestinal tract, including *E. coli* O157:H7, however proper cooking will kill these organisms. Other foodborne disease outbreaks from *Salmonella* and *Campylobacter* are associated with consumption of undercooked chicken. *Salmonella* infections also have been associated with consumption of raw or undercooked eggs. *Listeria monocytogenes* infections have been attributed to consumption of a number of foods, including improperly cooked...
hotdogs. Heat treatments for many foods are commonly accepted practices that not only make the food more palatable, but also, when conducted in accordance with accepted food safety guidelines, reduce the risk of acquiring foodborne infections.

Examples of Recent Outbreaks Attributed to Raw Milk Consumption

In recent years, illnesses from raw milk consumption have made national headlines. For example, *E. coli* O157:H7 infections occurred in the states of Oregon and Washington in December 2005. Of 140 people reportedly consuming milk from a farm, 18 became ill. Five patients (aged 1-13 years old) were hospitalized and four of these patients developed Hemolytic Uremic Syndrome (10). In 2006, *E. coli* O157:H7 was responsible for illness in six children from California (11) and two children in Washington (12). Litigation on behalf of two of the children from California has recently been filed (13). In three additional 2006 outbreaks, *Campylobacter jejuni* infections were diagnosed in two people in Ohio (14), five in Colorado (15), and > 50 people following consumption of raw milk cheese in Wisconsin (15). In 2007, illnesses attributed to raw dairy product consumption included a *Salmonella* outbreak that sickened 29 in Pennsylvania (16), a *Campylobacter* outbreak that affected 67 in Kansas (17), and listeriosis infections among four pregnant women in North Carolina, which resulted in three miscarriages and a premature delivery (18). For comprehensive information on foodborne illnesses, please visit the Centers for Disease Control (CDC) website: http://www.cdc.gov/foodborneoutbreaks/outbreak_data.htm. To reduce the risk of contracting foodborne illnesses, consumers should avoid raw milk products.

Cornell University staff members supporting this position statement:

Robert Ralyea, M.S., Sr. Extension Associate, Food Science Department (rdr10@cornell.edu)

David P. Brown, M.S., Sr. Extension Associate, Food Science Department (dpb1@cornell.edu)

Jason R. Huck, M.S., Dairy Operations Manager, Cornell University (jrh63@cornell.edu)

Martin Wiedmann, Dr. med. vet, Ph.D., Associate Professor and Director of Graduate Studies, Field of Food Science and Technology

Kathryn J. Boor, Ph.D., Professor and Food Science Department Chair (kjb4@cornell.edu)

Contact information:
Food Science Department
Stocking Hall
Cornell University
Ithaca, NY 14853
607-255-7643
References

